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Abstract. We investigate envelope solitary waves on square lattices with two degrees of freedom and
nonlinear nearest and next-nearest neighbor interactions. We consider solitary waves which are localized in
the direction of their motion and periodically modulated along the perpendicular direction. In the quasi-
monochromatic approximation and low-amplitude limit a system of two coupled nonlinear Schrödinger
equations (CNLS) is obtained for the envelopes of the longitudinal and transversal displacements. For
the case of bright envelope solitary waves the solvability condition is discussed, also with respect to the
modulation. The stability of two special solution classes (type-I and type-II) of the CNLS equations is
tested by molecular dynamics simulations. The shape of type-I solitary waves does not change during
propagation, whereas the width of type-II excitations oscillates in time.

PACS. 03.40.Kf Waves and wave propagation: general mathematical aspects – 63.20.Ry Anharmonic
lattice modes – 62.20.Pw Mechanical properties of solids

1 Introduction

The dynamical and thermodynamical properties of anhar-
monic chains have been studied both analytically and nu-
merically by many authors over the last three decades (for
reviews, see e.g. [1–6]). It was shown that these anhar-
monic chains can bear both kink-like excitations which in
the long-wave approximation are solutions of a Boussinesq
type of equation and envelope solitary waves which are
described by a nonlinear Schrödinger (NLS) type of equa-
tion. They are very robust and propagate without energy
loss, and their collisions are almost elastic even beyond
the range of the continuum approximation.

However, the studies of nonlinear excitations in two-
dimensional anharmonic lattices are much less developed.
The main attention has been paid to the investigation
of nonlinear excitations in models of two-dimensional lat-
tices with only one scalar degree of freedom per lattice
site. Eilbeck [7] and Duncan et al. [8] studied a strongly
anisotropic two-dimensional lattice which is described by
the Kadomtsev-Petviashvili equation in the continuum
limit. Druzhinin and Ostrovskii [9] considered nonlinear
excitations in quadratic and hexagonal lattices with a cu-
bic anharmonicity and showed the existence of cylindrical
solitary wave fronts. Kivshar [10] investigated the influ-
ence of nonlinearity on shear horizontal elastic waves and
showed the possibility to observe bright and dark enve-
lope solitary waves. Pouget et al. [11] studied nonlinear

a e-mail: franz.mertens@theo.phy.uni-bayreuth.de

properties of two-dimensional anharmonic lattices on peri-
odical substrates and investigated energy localization and
gap local pulses. Bonart and coauthors [12] studied an-
harmonic excitations which are localized at the surface of
two- and three-dimensional lattices.

Until recently there have been only a few analyt-
ical and numerical studies of two-dimensional lattice-
dynamical models with two-component displacement vec-
tors. Gaididei et al. [13] showed that the propagation of
axi-symmetric nonlinear acoustic pulses is governed by a
radial Boussinesq equation which is a cylindrical analogue
of the one-dimensional Boussinesq equation. Bonart et al.
[12] considered intrinsic localized anharmonic modes at an
edge of a 3-dimensional crystal taking into account real-
istic interatomic interaction potentials and proved their
stability over times much longer the vibrational period.
Eilbeck [14] found in a two-dimensional hexagonal lattice
model localized propagating breathers. Quite recently we
presented the results of investigations of solitary excita-
tions on square lattices with nonlinear interactions be-
tween nearest and next-nearest neighbours taking into
account anharmonic interactions of third and fourth or-
der [15]. We searched for solitary waves depending only
on one space variable and in the continuum limit we ob-
tained a Zakharov-like set of two coupled nonlinear partial
differential equations for the longitudinal and transversal
displacements. We got localized solutions which were used
as initial conditions for computer simulations. For the case
of Morse interatomic potentials we found solitary waves
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which are a combination of a kink and an envelope solitary
wave for the longitudinal and transversal displacements,
respectively. The goal of this paper is to expand on the re-
sults of [15], taking into account the dependence of atomic
displacements on two spatial variables. The approach of
the present work is to obtain analytical expressions for
solitonic excitations in square lattices with in-plane dis-
placements using the quasicontinuum approximation and
compare these expressions with the results of numerical
simulations.

The remainder of this paper is outlined as follows.
In Section 2 we introduce our model which is a two-
dimensional quadratic lattice model with anharmonic in-
teractions of third and fourth order. We consider the ef-
fect of nonlinearity on the propagation of two-dimensional
elastic waves. In the quasi-monochromatic approximation
and for low-amplitude modulation we show that the ba-
sic equations governing the lattice dynamics are reduced
to a system of coupled nonlinear Schrödinger equations
in the slow variables. In Section 3 we deal with numeri-
cal simulations using as initial conditions analytical solu-
tions obtained from the system of nonlinear Schrödinger
equations. Section 4 is devoted to a summary and con-
cluding remarks. In the Appendix we present an alterna-
tive derivation of the governing equations based on the
multiple-scale perturbation method.

2 System and equations of motion

We consider a quadratic two-dimensional lattice of parti-
cles of mass m (m = 1) with lattice spacing a (a = 1).
The displacement of the nth particle from equilibrium is
u(n, t) where u = (ux, uy) as well as n = (nx, ny) are
two-dimensional vectors. In the following, to simplify some
formulas we will denote ux also as u1, uy as u2, etc. The
Lagrangian of our system is given by

L = T − U . (1)

Here

T =
1

2

∑
n

∑
α

u̇α(n)u̇α(n) (2)

is the kinetic energy,

U =
1

2

∑
n

∑
∆

V∆(|∆+ u(n)− u(n−∆)|)− V∆(|∆|)

(3)

is the the potential energy of the system.
V∆(|r|) is the interaction potential of two atoms and

is a function of their separation |r| only, ∆ = (∆x,∆y)
being the vector which connects an atom with its near-
est (∆ = (±1, 0), (0,±1),∆ = 1) and next-nearest neigh-
bors (∆ = (1, 1), (1,−1), (−1, 1), (−1,−1), ∆ =

√
2).

For stability reasons we include next nearest neighbor

interactions from the very beginning in the interatomic
potentials1.

Expanding the potential function:

V∆ (|∆+ u(n)− u(n−∆)|)

into a Taylor series up to fourth order of u(n) we get

U = U2 + U3 + U4. (4)

Here

U2 =
1

4

∑
n

∑
∆

∑
α,β

Vαβ(∆)wα(n,∆)wβ(n,∆) (5)

with

Vαβ(∆) = K∆
∆α∆β

∆2
(6)

is the harmonic part of the potential energy,

U3 =
1

6

∑
n

∑
∆

∑
α,β,γ

Vαβγ(∆)wα(n,∆)wβ(n,∆)wγ(n,∆)

(7)

with

Vαβγ(∆) =
1

2

(
3K∆

∆
− L∆

)
∆α∆β∆γ

∆3

−
1

2

K∆

∆

(
δαβ

∆γ

∆
+ δαγ

∆β

∆
+ δγβ

∆α

∆

)
(8)

is the third-order anharmonicity term, and

U4 =
1

8

∑
n

∑
∆

∑
α,β,γ,δ

Vαβγδ(∆)wα(n,∆)

× wβ(n,∆)wγ(n,∆)wδ(n,∆) (9)

with

Vαβγδ(∆) =

(
5

2

K∆

∆2
−
L∆

∆
+

1

6
M∆

)
∆α∆β∆γ∆δ

∆4

+
1

6

(
L∆

∆
− 3

K∆

∆2

)(
∆α∆β

∆2
δγδ +

∆δ∆β

∆2
δγα +

∆γ∆δ

∆2
δαβ

+
∆γ∆β

∆2
δαδ +

∆α∆δ

∆2
δγβ +

∆α∆γ

∆2
δδβ

)
+

1

6

K∆

∆2
(δαβδγδ + δαγδβδ + δαδδγβ) (10)

is the fourth-order anharmonicity term. In equations (4–
10) the notations

1 A quadratic lattice with pure nearest neighbor interactions
is instable, i.e. the lattice can be distorted to a one dimensional
chain without applying any force.
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1

2
ω2
µ(k) = K1

(
sin2( kx2 ) + sin2(

ky
2 )
)

+K√2

(
sin2(

kx+ky
2 ) + sin2(

kx−ky
2 )

)
(17)

−(−1)µ
√
K2

1

(
sin2( kx2 )− sin2(

ky
2 )
)2

+K2√
2

(
sin2(

kx+ky
2 )− sin2(

kx−ky
2 )

)2

wα(n,∆) = uα(n−∆)− uα(n),

K∆ =
d2

dx2
V∆(x)

∣∣∣∣
x=∆

(11)

L∆ =
d3

dx3
V∆(x)

∣∣∣∣
x=∆

M∆ =
d4

dx4
V∆(x)

∣∣∣∣
x=∆

were used.
From the Lagrangian (1) we obtain the equations of

motion

üα(n) =
∑
∆,β

Vαβ(∆)wβ(n,∆) (12)

+
∑
∆,β,γ

Vαβγ(∆)wβ(n,∆)wγ(n,∆)

+
∑

∆,β,γ,δ

Vαβγδ(∆)wβ(n,∆)wγ(n,∆)wδ(n,∆).

The transformation

uα(n) =
1
√
N

∑
k

∑
ν

eiknTαν(k)ζν(k) (13)

with k = (kx, ky) being a two-dimensional wave vector,

T11(k) = T22(k) = cos(η(k))
T21(k) = −T12(k) = sin(η(k))

(14)

where N = N1N2 is the number of particles in the lattice,

tan(η(k)) =
Ad(k)

Ap(k) +
√
A2
p(k) +A2

d(k)
(15)

and

Ap(k) = K1

(
sin2(kx2 )− sin2(

ky
2 )
)

(16)

Ad(k) = K√2

(
sin2(

kx+ky
2 )− sin2(

kx−ky
2 )

)
diagonalizes the harmonic part of the Lagrangian L0 =
T−U2. The eigenfrequencies are defined by the expressions

See equation (17) above.

In the small-|k| limit the frequency ω1(k) belongs to a lon-
gitudinal acoustic wave while ω2(k) belongs to a transver-
sal one.

We will consider nonlinear excitations with frequencies
in a small interval around one of the harmonic frequencies
of the system, say

ω = ωµ(q) (18)

where µ = 1, 2 is a fixed index and q is an arbitrary wave
vector in the first Brillouin zone. To put it in another
way, we will consider envelope solitary waves with carrier
frequency (18) and carrier wave vector q.

To obtain effective equations which describe spatial
and temporal variations of nonlinear excitations in the
chosen frequency interval we used two approaches. The
first one is similar to the method used in [12]. It is rather
heuristic but faster than the second approach which is
based on the multiple-scale analysis (see Appendix).

Let us expand the displacement uα(n, t) into a series
where we separate the fast and slow time dependencies

uα(n, t) =
∞∑

l=−∞

e−ilωtu(l)
α (n, t) (19)

where u
(l)
α (n, t) =

(
u

(−l)
α (n, t)

)∗
. The first harmonics

u
(±1)
α (n, t) are responsible for the nonlinear properties of

the system in the frequency interval around (18). Taking
into account that the star of the vector q (see e.g. [16])
consists of the following four vectors

q ≡ (qx, qy) q′ ≡ (qx,−qy)
−q −q′

(20)

we can write the expression for u
(1)
α (n, t) in the form

u(1)
α (n, t) = eiqn 1

√
N

∑
k

eiknTαµ(k + q)φµ(k, t)

+ eiq
′n 1
√
N

∑
k

eiknTαµ(k + q′)ψµ(k, t) (21)

where the amplitudes ψµ(k, t) and φµ(k, t) are the Fourier
components of the envelope functions

Φµ(n, t) =
1
√
N

∑
k

eiknφµ(k, t), (22)

Ψµ(n, t) =
1
√
N

∑
k

eiknψµ(k, t).

They are defined only for small |k| and therefore the enve-
lope functions Φ(n, t) and Ψ(n, t) are slowly varying func-
tions of n. Using equation (22) one can approximately
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write instead of equation (21)

u(1)
α (n, t) = eiqn

(
Tαµ(q) − i

∂Tαµ(q)

∂q

∂

∂n

)
Φµ(n, t) (23)

+eiq
′n

(
Tαµ(q′)− i

∂Tαµ(q′)

∂q′
∂

∂n

)
Ψµ(n, t).

Inserting equation (19) into the equations of motion and
keeping terms (12) up to the second order of u(1)(n, t) we
obtain the following set of coupled equations

∂2
t u

(0)
α (n, t) =

∑
∆,β

Vαβ(∆)w
(0)
β (n, t)

+ 2
∑
∆,β,γ

Vαβγ(∆)w
(−1)
β (n, t)w(1)

γ (n, t)

(24)

(∂2
t − ω

2 − 2iω∂t)u
(1)(n, t) =

∑
∆,β

Vαβ(∆)w
(1)
β (n, t) (25)

+ 2
∑
∆,β,γ

Vαβγ(∆)
(
w

(0)
β (n, t)w(1)

γ (n, t) +w
(−1)
β (n, t)w(2)

γ (n, t)
)

+ 3
∑

∆,β,γ,δ

Vαβγδ(∆)w
(1)
β (n, t)w(1)

γ (n, t)w
(−1)
δ (n, t);

−4ω2u(2)
α (n, t) =

∑
∆,β

Vαβ(∆)w
(2)
β (n, t) (26)

+
∑
∆,β,γ

Vαβγ(∆)w
(1)
β (n, t)w(1)

γ (n, t).

Equations (24–26) were obtained using the following ap-
proximations;

i) The harmonics u(l)(n, t) with |l| ≥ 3 were neglected
because of their smallness (our numerical simulations
show that the third harmonic is 10 times smaller than
the second one).

ii) Both time derivatives on the right-hand-side of equa-
tion (26) were neglected because we will consider only
excitations for which 2ωµ(q) 6= ωµ(2q).

From equation (26) we obtain that the second har-
monic can be expressed as follows

u(2)
α (n, t) =

1

2

∑
ν

{
e2iqnTαν(2q)

Wµµν(q,q, 2q)

ω2
ν(2q)− 4ω2

µ(q)
Φ2
µ(n, t)

+ e2iq′nTαν(2q′)
Wµµν(q′,q′, 2q′)

ω2
ν(2q′)− 4ω2

µ(q′)
Ψ2
µ(n, t)

+ 2ei(q+q′)nTαν(q + q′)
Wµµν(q,q′,q + q′)

ω2
ν(q + q′)− 4ω2

µ(q)
Φµ(n, t)Ψµ(n, t)

}
(27)

where the notation

Wµνκ(k,k′,k′′) = 8i
∑
∆

∑
αβγ

Vαβγ(∆) sin(
k∆

2
) sin(

k′∆

2
)

× sin(
k′′∆

2
)Tαµ(k)Tβν(k′)Tγκ(k′′)

(28)

was introduced. It is seen from equations (21, 26) that
the zeroth (quasistatic) harmonic in the expansion (19)
consists of two parts

u(0)
α (n, t) = ζα(n, t) + ξα(n, t). (29)

The first term in this sum describes a spatially smooth
quasistatic distribution. Its behavior is governed by the
equation

∂2
t ζα(n, t) =

∑
∆,β

Vαβ(∆)(ζβ(n−∆, t)− ζβ(n, t))

− 4i
∑
kk′

∑
∆,β,γ

Vαβγ(∆) sin(
(k + k′)∆

2
) ei(k+k′) n

×

{
sin2(

q∆

2
)Tβµ(q)Tγµ(q)φµ(k, t)φ∗µ(−k′, t)

+ sin2(
q′∆

2
)Tβµ(q′)Tγµ(q′)ψµ(k, t)ψ∗µ(−k′, t)

}
(30)

where φµ(k, t) and ψµ(k, t) are the Fourier transforms of
the amplitude functions defined in equation (22).The sec-
ond term in equation (29) represents a spatially modulated
quasistatic distribution. It can be written as follows

ξα(n, t) = −
∑
ν

ei(q−q′)nTαν(q− q′)
Wµµν(q,q′,q− q′)

ω2
ν(q− q′)

× Ψ∗µ(n, t)Φµ(n, t) + c.c.

(31)

In what follows we consider nonlinear excitations which
are localized along the x-direction and modulated along
the y-direction. This means that the amplitudes Φµ(n, t)
and Ψµ(n, t) are functions of nx only. The Fourier com-
ponents of the amplitudes Φµ(n, t) and Ψµ(n, t) have the
form

φµ(k) = φ̄µ(kx) δ(ky) (32)

ψµ(k) = ψ̄µ(kx) δ(ky).

Thus in the vicinity of the wave vectors (20) one can write

(ωµ(q + k)− ωµ(q))φµ(k) '

(
vµkx +

1

2

∂2ωµ(q)

∂q2
x

k2
x

)
φµ(k)

(33)

and the same for ψµ(k). Here vµ(q) =
∂ωµ(q)

∂qx
is the

excitation group velocity (note that vµ(q) = vµ(q′)). We
will consider excitations with group velocities vµ less than
the phase velocity of the mode µ in the x-direction cµ =

limkx→0
ωµ(kx, qy)

kx
. Then in the reference frame moving

with the group velocity vµ when

Φµ(nx, t) = Φ̃µ(z, t̃) (34)

Ψµ(nx, t) = Ψ̃µ(z, t̃)
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with z = nx − vµt, t̃ = t, the smooth component ζα(n, t)
can be considered as static and in the continuum limit it
can be written as follows

∂ζα(n, t)

∂nx
=
Rµα(q)

c2α − v
2
µ

|Φ̃µ(z, t̃)|2+
Rµα(q′)

c2α − v
2
µ

|Ψ̃µ(z, t̃)|2 (35)

where

Rµν(q)=4
∑
∆

∑
αβ

Vαβν(∆) sin2

(
q∆

2

)
∆xTαµ(q)Tβµ(q).

(36)

Inserting equations (27, 29, 31, 35) into equation (25) we

obtain that the amplitudes of the excitations Φ̃µ(z, t) and

Ψ̃µ(z, t) satisfy the set of coupled nonlinear Schrödinger
equations

−2iωµ(q)
∂

∂t̃
Φ̃µ(z, t̃) = ωµ(q)

∂2ωµ(q)

∂q2
x

∂2

∂z2
Φ̃µ(z, t) (37)

+B11|Φ̃µ(z, t̃)|2 Φ̃µ(z, t̃) +B12|Ψ̃µ(z, t̃)|2Φ̃µ(z, t̃)

−2iωµ(q)
∂

∂t̃
Ψ̃µ(z, t̃) = ωµ(q)

∂2 ωµ(q)

∂q2
x

∂2

∂z2
Ψ̃µ(z, t̃)

+B21|Φ̃µ(z, t̃)|2 Ψ̃µ(z, t̃) +B22|Ψ̃µ(z, t̃)|2 Ψ̃µ(z, t̃).

In the equations (37) the second derivatives ∂2
t̃
Φ̃, ∂2

t̃
Ψ̃ and

∂z∂t̃Φ̃, ∂z∂t̃Ψ̃ where omitted because, as mentioned above,

the amplitudes Φ̃ and Ψ̃ are slow functions of t̃ and z.

In equations (37) the following abbreviations were used

B11 =
∑
ν

(
|Rµν(q)|2

c2ν − v
2
µ

+
1

2

|Wµµν(q,q, 2q)|2

ω2
ν(2q)− 4ω2

µ(q)

)
− 3Wµµµµ(q,q,q,q) (38)

B22 = idem (q → q′)

B12 = B21 =
∑
ν

(
Rµν(q)Rµν(q′)

c2ν − v
2
µ

+
|Wµµν(q,q′,q− q′)|2

ω2
ν(q− q′)

+
|Wµµν(q,q′,q + q′)|2

ω2
ν(q + q′)− 4ω2

µ(q)

)
− 6Wµµµµ(q,q,q′,q′) (39)

with the notation

Wµνκρ(k,k
′,k′′,k′′′) = 8

∑
∆α,β,γ,δ

Vαβγδ(∆)

× sin(
k∆

2
) sin(

k′∆

2
) sin(

k′′∆

2
) sin(

k′′′∆

2
)

× Tαµ(k)Tβν(k′)Tγκ(k′′)Tδρ(k
′′′). (40)

It is seen from equations (38, 28, 36, 40) that B11 = B22.

It is convenient to change the time variable to τ =
1

2

∂2ωµ(q)

∂q2
x

t and rescale the amplitudes of the excitations

to

Aµ(z, τ) =

√∣∣∣∣B11

βµ

∣∣∣∣ Φ̃µ(z, t),

Bµ(z, τ) =

√∣∣∣∣B11

βµ

∣∣∣∣ Ψ̃µ(z, t) (41)

βµ = ωµ
∂2ωµ(qx)

∂q2
x

·

The function Aµ(z, τ) and Bµ(z, τ) satisfy the set of cou-
pled equations

−i
∂

∂τ
Aµ(z, τ) =

∂2

∂z2
Aµ(z, τ) + sµ

(
|Aµ(z, τ)|2

+γµ|Bµ(z, τ)|2
)
Aµ(z, τ)

−i
∂

∂τ
Bµ(z, τ) =

∂2

∂z2
Bµ(z, τ) + sµ

(
γµ|Aµ(z, τ)|2

+|Bµ(z, τ)|2
)
Bµ(z, τ) (42)

where

sµ = sign

(
B11

βµ

)
, (43)

is Lighthill’s parameter [17] and

γµ =
B12

B11
(44)

is the cross-phase modulation coefficient.
Thus the nonlinear energy transfer in anharmonic

quadratic lattices is governed by a set of two nonlinearly
coupled NLS equations which is one of the most generic
models of nonlinear physics. Nonlinear coupling mecha-
nisms occur in a large variety of wave phenomena and in
particular in plasma physics, nonlinear optics and fluid
dynamics. Examples are the propagation of transversal
electro-magnetic waves in a cold plasma [18,19], the in-
teraction between Langmuir and ion-acoustic waves [20],
the light propagation in magneto-optically active media
[21], the interaction between the surface wave packets in
fluids [22], etc. The system (42) is not completely inte-
grable. It has been shown [23] to be solvable by the inverse
scattering transform only in the two cases:

i) γµ = 0 (see Zakharov-Shabat [24]),
ii) γµ = 1, sµ = 1 (see Manakov [25]).

In the general non-integrable case the system (42) was
studied mostly numerically, but a few powerful approxi-
mate analytical methods were also proposed [26–31].

In the problem under consideration the nonlinear cou-
pling takes place between the waves that belong to the
star of the wave vector (20). When q = q′ (qy = 0)
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Fig. 1. These solution maps show the existence condition sµΓµ > 0 for envelope solitary waves in the NLS equation (47) for
the types I and II under consideration and for each dispersion branch. We use the Morse potential (52) with α1 = α√2 = 0.1 for
the potential parameters. In the white areas sµΓµ is less than zero, so no localized envelope solution can exist. In the shaded
regions the blackness is proportional to the amplitude of the envelopes (for a fixed width). See the text for further discussion.

there is no modulation in the y-direction. It is seen from
equations (14, 15, 36) that

Tαµ(q) = δαµ
Rαµ(q) = δα1R1µ(q)

when qy = 0. (45)

Then we obtain from equations (23, 31, 35, 45) that the
excitations with frequencies close to ω1(qx, qy = 0) are
pure longitudinal (uy(n, t) ≡ 0), while the excitations with
frequencies near ω2(qx, qy = 0) consist of an oscillatory
transversal component uy(nx, t) and a smooth longitudi-
nal displacement ζx(nx, t). In other words, we get the case
which was studied in [15]. In the general case when q 6= q′,
there is a modulation in the direction perpendicular to the
movement of the excitation, and the structure of the exci-
tations is much more complicated. One of the aims of the
present paper is to study the effect of the modulation on
the elastic energy transfer in two-dimensional lattices.

3 Solitary waves and their interactions

In the following we will examine two special solutions of
(42) when the set of coupled NLS equations reduces to
a single NLS equation. However, keeping in mind, that

equations (42) are approximative solutions of the original
discrete equations of motion (12) only, this is not a real re-
striction. The decoupling condition, which we will consider
in the following, is valid in the continuum approximation
only, doesn’t imply that the description of the discrete
model is restricted by any means. The only reason, why
this way was chosen, is the considerable simplification of
the following analytical treatment.

Hence, we confine ourselves here to an investigation of
two types of solutions

Ia : A 6= 0, B = 0 (46)

Ib : A = 0, B 6= 0

II : A = B.

In all these cases the system (42) reduces to the NLS equa-
tion of the form

−i
∂

∂τ
Fµ(z, τ) =

∂2

∂z2
Fµ(z, τ) + sµ Γµ|Fµ(z, τ)|2 Fµ(z, τ)

(47)

where Γµ = 1 for the first type solutions and Γµ = 1 + γµ
for the second type solutions. Equation (47) has local-
ized solutions only when sµΓµ > 0. The dependence
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Fig. 2. Profile plot of the longitudinal displacement ux for
a type-Ia excitation for time T = 0 and time T = 14 000. We
used a wave vector q = (1.8, 1.05) and an inverse width of
ε = 1/L = 0.06. Note that there is practically no radiation.
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Fig. 3. Profile plot of the traversal displacements uy of a
type-Ia excitation for time T = 0 and time T = 14 000. Same
parameters as in Figure 2.

Fig. 4. Energy density plot for the type-Ia excitation from
Figures 2 and 3. Every stripe corresponds to a snapshot of the
lattice where one period of the modulation along the transver-
sal directions is plotted.

of the function sµ Γµ on the carrier wave vector q for a
specific potential is shown in Figure 1. Here we show a plot
for each dispersion branch (µ = 1, 2) and solution type. In
the white areas sµ Γµ is negative and there are no local-
ized solutions. The brightness in dark areas characterizes

the value of
βµ

ΓµB11
: the darker the point, the bigger is

this quantity. Taking into account that the solitary-wave
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Fig. 5. Space Fourier spectrum of the longitudinal displace-
ments of the type-Ia solitary waves in Figure 2. The solid lines
represent the initial spectrum whereas the dashed lines show
the spectrum at time T = 14 000. We show different plots for
each harmonic of the transversal modulation (the plot with
ky = 0 corresponds to the kink part of the solitary waves).
One can see clearly that the shapes of the Fourier transforms
are well preserved over time. Note also the different scales of
the amplitudes, which differ at least one order of magnitude be-
tween two successive harmonics. The initially not excited third
harmonic remains very small which confirms our assumption
in equations (24–26).

solution to the equation (47) has the form

Fµ(z, τ) = ε

√
2

sµΓµ
e−i

C
2 z+i(ε

2−C
2

4 )τ sech(ε(z + Cτ))

(48)

where C is the velocity in the moving frame of reference
and ε is the inverse width of the excitation, one obtains

that the amplitudes Φµ and Ψµ are proportional to
βµ

ΓµB11

according to equation (41). So one can also say that at
fixed width the amplitude of the Φµ-solitary wave (or Ψµ-
solitary wave) is larger in dark regions than in light ones.
We also see that moving along the qy axis for fixed qx one
can be either in a dark area or in a light one. To put it in
another way, the solitary-wave solutions may or may not
exist depending on the modulation wave number qy.
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Fig. 6. Space Fourier transform of the transversal displace-
ments of the type-Ia excitation in Figure 3.

~uy

~ux

!

0:60:40:20�0:2�0:4�0:6

1000

100

10

1

0:1

Fig. 7. Time Fourier Spectrum for the type-Ia excitation from
Figure 2 and 3. The plot shows the time Fourier transforms ũx
and ũy of point n = (1380, 2) between the times T = 12 000 and
T = 14 400. The harmonic frequency in this case is ω2 = 0.21.
Note the logarithmic scale for ũx and ũy.
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Fig. 8. Profile plot for ux of a type-II excitation for time T = 0
and time T = 14000. Here we used a wave vector q = (2.3, 1.05)
and an inverse width of ε = 1/L = 0.06.
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Fig. 9. Profile plot for uy of a type-II excitation for time
T = 0 and time T = 14 000. Same parameters as in Figure 8.
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Fig. 10. The energy which is localized around the center of
solitary waves of type-II versus time. The carrier wave vector is
q = (2.3, 1.05), ε is the amplitude parameter defined in equa-
tion (48) and ∆ is the length of the interval along the x-axis in
which the energy is measured. The localized energy is inversely
proportional to the width of the solitary waves. The frequency
of the oscillations of the width is approximately proportional
to the square of the amplitudes.
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Fig. 11. Energy density plot for the type-II excitation from Figure 8. Same kink of plot as in Figure 4.

We consider solitary waves which propagate with a ve-
locity equal to the group velocity vµ(q) (this means that
we set C = 0 in equation (48)). In this case we obtain from
(19, 23, 27, 29, 31, 41, 48) that the atomic displacements
uα(n, t) may be written as follows

Ia) uα(n, t) = 2ε

∣∣∣∣ βµB11

∣∣∣∣ Rµα(q)

c2α − v2
µ(q)

tanh(ε(nx − vµ(q)t))

(49)

+ 2ε

√
2

∣∣∣∣ βµB11

∣∣∣∣Tαµ(q) cos(qn− (ωµ(q)−
ε2

2

βµ

ωµ(q)
)t)

× sech(ε(nx − vµ(q)t)) +O(ε2)

Ib) idem (q → q′) (50)

II) uα(n, t) = (51)

2ε

∣∣∣∣ βµ

B11 +B12

∣∣∣∣ Rµα(q) +Rµα(q′)

c2α − v2
µ(q)

tanh(ε(nx − vµ(q)t))

+ 4ε

√
2

∣∣∣∣ βµ

B11 +B12

∣∣∣∣Tαµ(q) cos(qy ny +
α− µ

2
π)

× cos(qx nx − (ωµ(q)−
ε2

2

βµ

ωµ(q)
)t−

α− µ

2
π)

× sech(ε(nx − vµ(q)t)) +O(ε2).

For the sake of simplicity we omitted the terms of order
ε2. Note however, that we included for the numerical sim-
ulations, beside the expressions (49, 50), also the second
order terms given by (23, 27, 31) in the initial conditions.
These terms are important, because only in this case we
could avoid the creation of additional kinks and ripples.

The solutions given by equations (49, 50) are a
superposition of a kink and a symmetric envelope solitary
wave, both moving with velocity vµ(q) in the x-direction.
It is seen from equations (49, 50) that in the case I the
envelope solitary wave is a linearly polarized wave, while
in the case II it is a wave with elliptic polarization. The

carrier wave of the type-I envelope solitary wave prop-
agates with its phase velocity in a direction which
depends on the carrier wave vector q (q′). In the
case II the carrier wave is a combination of a prop-
agating longitudinal wave and a standing transversal
wave. The kinks in the solution (49–50) are either
rarefactive or compressive, according to the sign of
Rµα(q)

c2α − v
2
µ(q)

. In the case II the kink in the transversal

displacements (α = 2) vanishes because Rµ2(q) =
−Rµ2(q′) (see Eq. (36)) and uy(n, t) becomes symmetric
in n.

To check the stability and long-time behavior of the
solitary-wave solutions obtained from the NLS equations
(37), we performed molecular dynamics computer simula-
tions. We used an interatomic Morse potential

V∆(x) =
(

1− e−α∆(x−∆)
)2

(52)

with α1 = α√2 = 0.1 as potential parameters for NN and
NNN interactions, respectively. Note that, in addition to
the Taylor expansions (6, 8, 10) we also performed simula-
tions for the full potential (52) as reference. A comparison
of those simulations showed, that the Taylor expanded
potentials and the simulations of the full Morse potential
yield the same results within 0.5% difference in the dis-
placements, which confirms the accuracy of the expanded
potentials.

We used periodic boundary conditions for the
(transversal) y-direction and free boundaries along the
(longitudinal) x-direction. The equations of motion were
integrated using a symplectic solver [32] and, for compar-
ison, a fourth order Runge-Kutta scheme. The time step
was fixed so that the total energy was conserved up to
a relative error of 10−4. The length of the lattice in x-
direction was chosen between 500 and 1000 particles de-
pending on the width and velocity of the excitations and
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the duration of the simulation. The width of the lattice
in y-direction was chosen in such a way that exactly one
period of the applied transversal modulation fitted into
the lattice. We also used larger lattice widths with more
modulation periods included and checked that modes with
longer wavelengths were not excited.

In Figures 2 and 3 we present the longitudinal and
transversal components of the atomic displacements for
the type-Ia solitary wave in a chain with Morse interatomic
interactions (52), a carrier wave vector q = (1.8, 1.05)
and the frequency which corresponds to the lower branch
µ = 2. As initial condition we used equation (49) with
ε = 0.06. The solitary wave is moving with velocity 0.09.
The kink parts for both the longitudinal and transversal
component are rarefactive. The solitary wave is very stable
and there is practically no radiation. Figure 4 shows the
time evolution of the energy density. The solitary wave has
a complicated internal structure. To check how the struc-
ture changes in time we calculated the Fourier-transform
of the initial condition (49) and of the evolved solitary
wave at time T = 14 000. The results are presented in Fig-
ures 5–7. It is seen that in the course of the experiment
the internal structure of the solitary wave practically does
not change.

For type-II excitations the situation is more compli-
cated. Figures 8 and 9 show the initial condition and a
snapshot at time T = 14 000 for a type-II excitation with
q = (2.3, 1.05) and µ = 2. In contrast to the previously
discussed type-Ia solutions there is an additional dynami-
cal behaviour: the width of the excitations oscillates with
an amplitude dependent frequency. This can be seen very
clearly in Figure 10, where we plotted the energy local-
ized in a certain fixed interval around the center of mass
versus time for different solitary wave amplitudes. A maxi-
mum in the curve indicates a minimal width of the solitary
wave. Figure 11 shows an energy density plot for a type-II
excitation and gives a direct impression of the reshaping
behaviour. We remind that for the dynamics of type-II ex-
citations both amplitudes contribute to the coupled NLS
equations (37). This situation is similar to the case of an
optical fiber supporting two distinct propagating modes
[26], where the system is also governed by two coupled
NLS equations. Direct numerical simulations of this set
of equations [33–36] produce the same behaviour as our
type-II excitations, namely the reshaping of the envelopes
in course of the time. Ueda and Kath examined this be-
haviour analytically using a collective variable approach
[26] and estimated for the frequency of the width oscilla-
tion:

ωi =
32

π

β2
µ

B11 +B12
ε2 . (53)

Inserting the parameters from the simulations of Figures
8 and 9 we obtain a period Ti ≈ 36 000 for ε = 0.03 which
is within the same order of magnitude as the oscillations
in Figure 10 (Ti ≈ 18 000). Furthermore the quadratic
dependence on the amplitude is also confirmed approx-
imately. We conclude that the reshaping of the solitary
waves of the coupled NLS equations found previously in
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Fig. 12. Space Fourier spectrum of the longitudinal displace-
ments of the type-II excitation in Figure 8. The solid lines
represent the initial excitations whereas the dashed lines show
the spectrum at time T = 14 000. We show different plots for
each harmonic of the transversal modulation. One can see that
the third harmonic for the modulation in transversal direction
is considerably excited and contributes significantly to the ex-
citation.

nonlinear optics and the reshaping found in the simula-
tions of our discrete system have presumably the same
origin.

The Fourier plots in Figures 12 and 13 give also evi-
dence that type-II solitary waves are not fully described
by the solutions (50). Note that the third harmonic in the
longitudinal displacement is considerably excited, which
makes our approximation in equations (24–26) invalid for
this particular case.

In Figures 15 and 16 we present a collision between two
type-Ia solitary waves moving in opposite directions (their
carrier wave vectors are q = (2, 2.09) and q = −(2, 2.09)).
The solitary waves preserve their shape under the collision
and there is negligible remanent radiation.

In Figures 17 and 18 we present a collision between
type-Ia and type-Ib solitary waves. In contrast to the pre-
vious case the scattering is apparently non-elastic. Dur-
ing the collision the two solitary waves pass through each
other but some radiation is shedded. Such a difference be-
tween scattering of solitary waves of the same type and
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Fig. 13. Space Fourier transform of the transversal displace-
ments of the type-II excitation in Figure 9. The solid lines
corresponds to T = 0, the dashed lines represent the spectrum
at T = 14 000.

of different types is not unexpected. Indeed, the dynamics
of the collision between two type-Ia (or Ib) waves is gov-
erned mainly by the first NLS equation in (42), while the
component B(z, t) plays the role of a small perturbation.
The almost elastic collision of solitary waves in this case is
the result of the integrability of the NLS equation. How-
ever, when two solitary waves of different types interact,
the dynamics is governed by a system of coupled NLS
equations which is nonintegrable. The scattering of two
solitary of different types in the framework of the system
of two coupled NLS equations was studied in [31]. It was
shown that the collisions are essentially nonelastic. During
collision some radiation is shedded and daughter solitary
waves are generated [31]. Taking into account that the
system (42) represents only an approximate description
of the lattice dynamics, it is evident that in this case the
nonelastic nature of the soliton-soliton scattering in this
case should be more pronounced than in [31].

~uy

~ux

!

10:50�0:5�1

1000

100

10

1

0:1

0:01

0:001

Fig. 14. Time Fourier Spectrum of the type-II excitation in
Figures 8 and 9. The plot shows the time Fourier transforms
of the longitudinal and transversal displacements of point
n = (1215, 2) between the times T = 12 400 and T = 16 400.
Due to the absence of a non-oscillating contribution to the
transversal displacement in order O(ε1) one can see nicely the
higher harmonics which were excited though they remain quite
small. Note the logarithmic scale for ũx and ũy.
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Fig. 15. Time evolution for the scattering of two type-Ia soli-
tary waves which have carrier wave vectors of q = (2.0, 1.05)
and q = (−2.0,−1.05). The inverse width of the bigger struc-
ture is ε = 1/L = 0.16, for the small structure ε = 0.08. Only
the longitudinals displacement displacements ux are shown.

Fig. 16. Energy density plot for the scattering of the two
type-Ia excitations from Figure 15.
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Fig. 17. Time evolution for a scattering experiment with
a type-Ia and a type-Ib excitation. The parameters are q =
(1.75, 1.05), ε = 0.1 for the type-Ia excitation on the left and
q′ = (−1.75, 1.05), ε = 0.1 for the type-Ib excitation on the
right. Only the longitudinal displacements are shown.

Fig. 18. Energy density plot for the scattering experiment of
Figure 17.

4 Conclusions

We have examined the nonlinear dynamics of anhar-
monic two-dimensional square lattices with anharmonic
interactions of third and fourth order taking into ac-
count the vector character of the atomic displacements.
We have shown that in the quasi-monochromatic approx-
imation and low-amplitude limit the dynamics of the two-
dimensional square lattice is governed by a system of two
coupled nonlinear Schrödinger equations for two slowly
varying envelope amplitudes. The two amplitudes come
here into existence as a consequence of the symmetry of
the lattice: in general, there are two nonequivalent wave
vectors in the first Brillouin zone for which the frequencies
and group velocities of linear eigenmodes coincide.

The conditions for the existence of spatially localized
nonlinear excitations and their dependence on the modu-
lation wave vector were examined with the help of solution
maps. It was shown that the nonlinear excitations are a
superposition of a kink and an envelope solitary wave.
The kink is either rarefactive or contractive depending on

the parameters of the problem. We considered two types
of excitations: linearly and elliptically polarized envelope
solitary wave. For type-I the envelope solitary wave are ac-
companied by kinks in both the longitudinal and transver-
sal displacements. The elliptically polarized envelope soli-
tary wave (type-II) are symmetric in the transversal dis-
placements (there is no kink component) and asymmetric
for the longitudinal displacements.

Our analytical solitary wave solutions were tested by
longtime molecular dynamics computer simulations. The
type-I solitary waves completely preserve their shapes,
also in collision experiments. For the type-II solitary waves
we observe a reshaping, namely oscillations of the width.
This behaviour is compared to analytical and numerical
results obtained from coupled NLS equations in nonlin-
ear optics. We conclude that the reshaping presumably
has the same origin in both systems. In the scattering be-
tween type-Ia and type-Ib solitary waves a small part of
the energy is converted into radiation of linear excitations.

Yu. Gaididei would like to express his thanks for the hospitality
of the University of Bayreuth where this work was done. Partial
support was received from project X 271.5 of the scientific and
technological cooperation between Germany and Ukraine.

Appendix: Multiple scale analysis

It turned out that the simulations presented in Section 3
are fairly sensitive to the “right” choice of initial condi-
tions, i.e. our analytical solutions have to be very close to
the solutions of the discrete system.

The main assumption of the following analysis is the
separation of the dynamics of the particle displacements
on different time and space scales. This is a generalization
of the idea of envelope solitary waves for which the smooth
envelope is treated separately from the strongly oscillat-
ing carrier wave (e.g. see [6]). The hierarchy of scales is
taken into account by introducing a new set of indepen-
dent variables

ni = εin (54)

ti = εit ,

where ε is the small parameter separating the scales. Fur-
thermore we expand the displacement in the following
way:

uα(n) =
∞∑
l=1

εlul,α (n0, {ni} ; t0, {ti}) . (55)

Here α ∈ {x, y} designates the longitudinal (x) and
transversal (y) directions and {ni} and {ti} (i ≥ 1) sym-
bolize the set of slow space and time variables.

In the next step we expand the relative displace-
ments (11) between two neighboring particles in a Taylor
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series with respect to ε∆ on the slow scales:

uα(n0 −∆, {ni − ε
i∆})− uα(n0, {ni}) =

uα(n0 −∆, {ni})− uα(n0, {ni})

−
∑
lβ

εl
∂

∂nl,β
uα(n0 −∆, {ni})∆β

+
1

2

∑
lmβγ

εl+m
∂

∂nl,β

∂

∂nm,γ
uα(n0 −∆, {ni})∆β∆γ

+ . . . . . . (56)

Inserting this expression into the equations of motion (12)
and considering separately each order in ε we obtain in
O(ε1) the linear equation

∂t0t0u1,α(n0, t0, . . . ) =∑
∆β

Vαβ(∆) [u1,β(n0 −∆, t0, . . . )− u1,β(n0, t0, . . . )] .

(57)

Unfortunately this means that the calculations become
very complex, e.g., see equation (38). In order to eliminate
all errors it proved to be advantageous to use two different
ways of analytical treatment. In this section we apply a
Multiple Scale Analysis to the equations of motion (12),
generalizing Konotop’s treatment of the one-dimensional
case [37]. As we shall see, the approach used in Section 2
and the multiple scale calculations presented here lead to
exactly the same results.

Here and in the following we indicate only the depen-
dency on the fastest variables to enhance lucidity.

The general solution to this equation is obviously a su-
perposition of the linear eigenmodes Tαµ defined in (14)
on the fastest scale. But in contrast to [37] we should also
include a smooth component Dµ′ which does not depend
on the fast variables n0 and t0 on the same footing as the
principal envelope structure. As in Section 2 we consider
the star of a fixed carrier wave vector q and one disper-
sion branch µ with harmonic frequency ωµ, so the general
solution reads

u1,α(n0, t0, . . . ) = e−i(ωµt0−qn0)Tαµ(q) Φµ(x1, t1, . . . )

e−i(ωµt0−q′n0)Tαµ(q′) Ψµ(x1, t1, . . . )

+
∑
µ′

Tαµ′(0) Dµ′(x1, t1, . . . ) + c.c.

(58)

with q = (qx, qy) and q′ = (qx,−qy). Similar to equa-
tion (32) we consider only nonlinear excitations which are
localized in x-direction and periodically modulated along
the y-direction and hence drop the space dependency on
{yi} for Φµ, Ψµ and Dµ.

In the next-higher order O(ε2) we obtain the equation

∂t0t0u2,α(n0, t0, . . . )−
∑
∆β

Vαβ(∆)(u2,β(n0 −∆, t0, . . . )

− u2,β(n0, t0, . . . )) = −2∂t0t1u1,α(n0, t0, . . . )

−
∑
∆β

Vαβ(∆)∆x∂x1u1,β(n0 −∆, t0, . . . )

+
∑
∆βγ

Vαβγ(∆)
[
(u1,β(n0 −∆, t0, . . . )− u1,β(n0, t0, . . . ))

× (u1,γ(n0 −∆, t0, . . . )− u1,γ(n0, t0, . . . ))

]
. (68)

To fulfill this equation we must take into account the sec-
ond harmonic as well as an additional smooth contribution
in the displacement u2:

u2,α(n0, t0, . . . ) =
∑
k′µ′

[
D̃µ′

k′ (x1, t1, . . . )

+Bµ
′

k′ (x1, t1, . . . ) e
−iωµt0

+B
µ′(2)
k′ (x1, t1, . . . ) e

−2iωµt0

]
×eik

′n0Tαµ′(k
′) + c.c.

(69)

Substituting (69) in (68) and using the orthogonality and
completeness properties of the linear eigenmodes Tαµ′ we
single out one equation for each harmonic (see also [37]).
For the non-oscillating component we obtain

D̃µ′

k′ (x1, t1, . . . ) = −
Wµµµ′(q,q

′,q− q′)

ω2
µ′(q− q′)

δk′,q−q′

× Φµ(x1, t1, . . . )Ψ
∗
µ(x1, t1, . . . ). (70)

The terms proportional to the first harmonic e−iωµt0 yield

2iωµ∂t1Φµ(x1, t1, . . . ) = Gµµ(q) ∂x1Φµ(x1, t1, . . . )

2iωµ∂t1Ψµ(x1, t1, . . . ) = Gµµ(q′) ∂x1Ψµ(x1, t1, . . . ) (71)

with

Gµµ
′

(k′) = −i
∑
αβ∆

Vαβ(∆)∆x sin(k′∆) Tαµ(k′) Tβµ′(k
′).

(72)

It can be easily shown that

Gµµ(k′) = −2iωµ(k′)vµ(k′) (73)

where vµ =
∂ωµ

∂kx
is the harmonic group velocity along

the x-direction [37]. Equations (71) can be fulfilled if we
assume that Φµ and Ψµ depend on the slow time scale t1
and slow space scale x1 only through the traveling wave
variable z1 = x1 − vµt1.

There is also a contribution in the sum (69) originat-
ing from the other branch µ′ 6= µ, which corresponds
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∂t0t0u3,α(n0, t0, . . . )−
∑
∆β

Vαβ(∆) (u3,β(n0 −∆, t0, . . . )− u3,β(n0, t0, . . . )) =

−2∂t0t1u2,α(n0, t0, . . . )− (∂t1t1 + 2∂t0t2)u1,α(n0, t0, . . . )

+
∑
∆β

Vαβ(∆)

[
−∆x∂x1u2,β(n0 −∆, t0, . . . )−∆x∂x2u1,β(n0 −∆, t0, . . . )

+ 1
2∆

2
x∂x1x1u1,β(n0 −∆, t0, . . . )

]
+
∑
∆βγ

2Vαβγ(∆)

[
(u1,β(n0 −∆, t0, . . . )− u1,β(n0, t0, . . . ))

× (u2,γ(n0 −∆, t0, . . . )− u2,γ(n0, t0, . . . ))

−∆x (u1,β(n0 −∆, t0, . . . )− u1,β(n0, t0, . . . ))

×∂x1u1,γ(n0 −∆, t0, . . . )

]
+
∑
∆βγδ

Vαβγδ(∆)

[
(u1,β(n0 −∆, t0, . . . )− u1,β(n0, t0, . . . ))

× (u1,γ(n0 −∆, t0, . . . )− u1,γ(n0, t0, . . . ))

× (u1,δ(n0 −∆, t0, . . . )− u1,δ(n0, t0, . . . ))

]
.

(67)

to the correction proportional to the space derivative in-
troduced on the r.h.s. of equation (23):

Bµ
′

k′ (z1, . . . ) =
Gµµ

′

(q)

ω2
µ − ω

2
µ′(q)

δk′,q (1− δµ′µ) ∂z1Φµ(z1, . . . )

+
Gµµ

′
(q′)

ω2
µ − ω

2
µ′(q

′)
δk′,q′ (1− δµ′µ) ∂z1Ψµ(z1, . . . ). (74)

For the second harmonic we obtain

B
µ′(2)
k′ (z1, . . . ) =

1

2

Wµµµ′(q,q, 2q)

ω2
µ′(2q)− 4ω2

µ

δk′,2q Φ
2
µ(z1, . . . )

+
1

2

Wµµµ′(q
′,q′, 2q′)

ω2
µ′(2q′)− 4ω2

µ

δk′,2q′ Ψ
2
µ(z1, . . . )

+
Wµµµ′(q,q

′,q + q′)

ω2
µ′(q + q′)− 4ω2

µ

δk′,q+q′ Φµ(z1, . . . )Ψµ(z1, . . . )

(75)

which is equal to equation (27).Wµµ′µ′′(k,k
′,k′′) is de-

fined in equation (28).
Going to the next-higher order we obtain in O(ε3) the

equation

See equation (67) above.

We now truncate the asymptotic expansion of the dis-
placement (55) and put ul for l ≥ 3 to zero. Singling out
the non oscillating part we get the relation

∂z1
(
Dµ′(z1, . . . ) +D∗µ′(z1, . . . )

)
=
Rµµ′(q)

c2µ′ − v
2
µ

|Φµ(z1, . . . )|
2

+
Rµµ′(q

′)

c2µ′ − v
2
µ

|Ψµ(z1, . . . )|
2

(68)

with

Rµµ′(k
′) = 4

∑
βγ∆

Vµ′βγ(∆)∆x sin2(
k′∆

2
)Tβµ(k′)Tγµ(k′)

(69)

as the coupling parameter and

c2µ′ =
1

2

∑
∆

Vµ′µ′(∆)∆2
x (70)

is the square of the sound velocity in x-direction.

Looking at the equation proportional to the first har-
monic e−iωµt0 and inserting equations (74, 75, 68) we even-
tually end up in a set of coupled Nonlinear Schrödinger
Equations for the envelope functions Φµ and Ψµ:

− 2iωµ∂t2Φµ(z1, . . . )− 2iωµvµ ∂x2Φµ(z1, . . . ) =

ωµ
∂2ωµ

∂k2
x

∂z1z1Φµ(z1, . . . ) +B11 |Φµ(z1, . . . )|
2
Φµ(z1, . . . )

+B12 |Ψµ(z1, . . . )|
2
Φµ(z1, . . . ).

− 2iωµ∂t2Ψµ(z1, . . . )− 2iωµvµ ∂x2Ψµ(z1, . . . ) =

ωµ
∂2ωµ

∂k2
x

∂z1z1Ψµ(z1, . . . ) +B12 |Φµ(z1, . . . )|
2
Ψµ(z1, . . . )

+B22 |Ψµ(z1, . . . )|
2
Ψµ(z1, . . . ) (71)
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with

B11 =
∑
µ′

1

2

|Wµµµ′ (q,q, 2q)|2

ω2
µ′(2q)− 4ω2

µ

+
∑
µ′

R2
µµ′(q)

c2µ′ − v
2
µ

− 3Wµµµµ(q,q,q,q)

B22 = idem (q→ q′)

B12 =
∑
µ′

|Wµµµ′(q,q
′,q− q′)|2

ω2
µ′(q− q′)

+
∑
µ′

|Wµµµ′(q,q
′,q + q′)|2

ω2
µ′(q + q′)− 4ω2

µ

+
∑
µ′

Rµµ′(q)Rµµ′(q
′)

c2µ′ − v
2
µ

− 6Wµµµµ(q,q,q′,q′). (72)

By transforming the system into the reference frame mov-
ing with velocity vµ we can drop the terms proportional
to ∂x2Φµ and ∂x2Ψµ. The resulting equations are identical
to equation (37).
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4. F. Mokross, H. Büttner, J. Phys. C 16, 4539 (1983).
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Jiménez, L. Vázquez (World Scientific, Singapore, 1995),
p. 244.

16. M. Lax, Symmetry principles in solid state and molecu-
lar physics (J. Wiley and Sons, New York-London-Sydney-
Toronto, 1974).

17. M. Lighthill, J. Inst. Math. Appl. 1, 219 (1965).
18. A. Berkhoer, V. Zakharov, Sov. Phys. JETP 31, 486

(1970), [ Zh. Exp. Teor. Fiz. 58, 903 (1970)].
19. K. Das, S. Sihi, J. Plasma. Phys. 21, 183 (1979).
20. M. Gupta, B. Som, B.D. Gupta, J. Plasma. Phys. 25, 499

(1981).
21. V. Mezentsev, G. Smirnov, Opt. Commun. 68, 153 (1988).
22. D. Benney, A. Newell, J. Math. Phys. 46, 133 (1967).
23. V. Zakharov, E. Schulman, Physica D 4, 270 (1982).
24. V. Zakharov, A. Shabat, Sov. Phys. JETP 34, 62 (1972).
25. S. Manakov, Sov. Phys. JETP 38, 248 (1974).
26. T. Ueda, W. Kath, Phys. Rev. A 42, 563 (1990).
27. D. Kaup, B. Malomed, R. Tasgal, Phys. Rev. E 48,

3049 (1993).
28. J. Bhatka et al., Phys. Rev. E 49, 3376 (1994).
29. M. Haelterman, A. Sheppard, Phys. Rev. E 49, 3376

(1994).
30. Y. Silberberg, Y. Barad, Opt. Lett. 20, 246 (1995).
31. J. Yang, D. Benney, Stud. Appl. Math. 96, 111 (1996).
32. D. Duncan, C. Walshaw, J. Wattis, in Nonlinear coher-

ent structures in physics and biology, edited by M. Re-
moissenet, M. Peyrard (Springer Verlag, New York - Hei-
delberg - Berlin, 1991), pp. 151–158.

33. E.M. Wright, G.I. Stegeman, S. Wabnitz, Phys. Rev. A
40, 4455 (1989).

34. C.R. Menyuk, Opt. Lett. 12, 614 (1987).
35. C.R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
36. V.V. Afanasyev, Y.S. Kivshar, V.V. Konotop, V.N. Serkin,

Opt. Lett. 14, 805 (1989).
37. V.V. Konotop, Phys. Rev. E 53, 2843 (1996).


